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Introduction

In statistics, uncertainty is commonly captured through

uncertainty sets (i.e., confidence intervals or prediction sets).

In certain scenarios, different (dependent) uncertainty sets are

generated by different agents.

Some examples are conformal prediction intervals based on

different algorithms or confidence intervals for a parameter of

interest based on different methods.

How should we combine K arbitrarily dependent uncertainty

sets?

Problem statement

Input: C1, . . . , CK are K ≥ 2 arbitrarily dependent uncertainty sets

satisfying P(c ∈ Ck) ≥ 1 − α, for all k = 1, . . . , K.

Output: a single set that combines them in a black-box manner.

Two important quantities to consider: coverage and size.

Two naive solutions:

∪K
k=1Ck has coverage 1 − α, but it is too conservative.

∩K
k=1Ck has coverage 1 − Kα, but it is too anti-conservative.

Majority vote

Include all the points that are contained in at least half of the sets.

CM :=
{

s ∈ S : 1
K

K∑
k=1

1{s ∈ Ck} >
1
2

}
.

Using Markov’s inequality: P(c ∈ CM) ≥ 1 − 2α.

In addition,

m(CM) ≤ 2
K

K∑
k=1

m(Ck),

where m(·) denotes the Lebesgue measure of a set.

Summary of the main results

Majority vote is a good way to merge uncertainty sets.

Improvements achieved through randomization and

exchangeability.

Drawback: In some cases (rarely in sims), the output is a union of

intervals.

The method can be used to derandomize statistical procedures

based on data splitting.

Adding prior information

If there is a belief that certain agents are more accurate → incor-

porate prior information through a prior distribution w = (w1, .., wk)
over the agents.

Weighted majority vote:

CW :=

s ∈ S :
K∑

k=1

wk1{s ∈ Ck} >
1
2

 .

In this case: P(c ∈ CW ) ≥ 1 − 2α and m(CW ) ≤ 2
∑K

k=1 wkm(Ck).

Improving majority vote with randomization

Let u ∼ Unif(0, 1), independent of all the data. Define

CR :=

s ∈ S :
K∑

k=1

wk1{s ∈ Ck} >
1
2

+ u/2

 .

We obtain that CR ⊆ CW and P(c ∈ CR) ≥ 1 − 2α.

The proof is based on the uniformly-randomized Markov inequality.

Another possibility is to define the set CU with a completely random

threshold u, in this case P(c ∈ CU) ≥ 1 − α.

Merging exchangeable sets

When C1, . . . , CK are exchangeable, it is possible to obtain

something better than a naive majority vote.

We denote CM(1 : K) = CM to highlight that it is based on the

majority vote of sets C1, . . . , CK.

We define

CE :=
K⋂

k=1

CM(1 : k).

By definition CE ⊆ CM , in addition P(c ∈ CE) ≥ 1 − 2α.

A simple way to improve the majority vote for arbitrarily dependent

sets: process them in a random order (Cπ).

Derandomizing statistical procedures

It can be used also for point estimators.

Theorem: Suppose θ̂1, . . . , θ̂K are K univariate point estimators of

θ that are based using n data points and satisfy a high probability

concentration bound

P(|θ̂k − θ| ≤ w(n, α)) ≥ 1 − α,

for some function w. Then, their median θ(dK/2e) satisfies

P(|θ̂(dK/2e) − θ| ≤ w(n, α)) ≥ 1 − 2α. (1)

Further, if θ̂1, . . . , θ̂K, . . . are exchangeable, then (1) is uniformly

valid.

Example: conformal prediction with lasso

Fit lasso regression to data, with different penalty parameters λ and

α = 0.05.
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Randomized sets used u = 1/2 for visualization.

Coverage: CM = 0.97, CR = 0.92, CU = 0.96, Cπ = 0.93.

Derandomizing MoM (Median-of-Means)

µ̂MoM: Estimator of the mean for X1, ..., Xn
iid∼ P based on

data-splitting.

µ̂MoMoM := median(µ̂MoM
1 , . . . , µ̂MoM

K )
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Multi-split conformal inference

Construct K split conformal prediction intervals + (exchangeable)

majority vote.
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CE: smaller sets and coverage closer to the level 1 − α = 0.9.
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